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Equations for determining the working life of a plate subjected to a longttudinal force in the 
presence of symmetric heating are derived taking into account the change of the modulus of 
elasticity and the ultimate strength of the material with temperature. 

The reason of a gradual softening of products on heating is the nonstationary process of change of the 
mechanical properties of the material, which occurs as the heat front moves deeper into the product. An 
additional lowering of the strength produces thermal stresses which appear in the presence of large tem- 
perature gradients. In view of this it is of practical interest to estimate the decrease of the working life of 

products, subjected to heating, using traditional criteria applied in heat-strength computations, for ex- 
ample, the decrease of the safety factor or the carrying capacity. 

We shall derive the desired equations in the simplest case of loading, i.e., for a uniaxial stretching 

(compression) of a very thin plate-sample (H << 2R) and of a plate, whose width is comparable to the thick- 
ness; the heat flux is one-dimensional and directed perpendicular to the applied force. Initially we assume 
that the material obeys Hooke's law and its ultimate strength is constant, being independent of the time of 
loading. 

For a symmetric thermal action on the thin plate the stresses in the transverse direction can be 
neglected; then the stresses at any point in the plate are given by [I] 

c% = E [(~:~-- Ec~AT)/E - -  aAT].  (1) 

In this expression the bar on the top denotes integral mean values of the corresponding parameters 
over the thickness of the plate. 

The softening of samples on heating is characterized by the relative strength n t = (O-x)p/Orb(T0) , where 
(rb(T0) is the ultimate strength at T = T 0. From Eq. (i) for ~ - const we have 

r'~t = E / E  - -  ct (EAT - -  E~A T)/ab = nts  + nza. (2) 

The f i r s t  t e r m  in this formula  shows the fac tor  by which the relat ive strength is lowered due to the 
dec rease  in the modulus of elast ici ty of the mater ia l  at increased tempera ture ;  the second charac te r i zes  
the decrease  in the working capaci ty only due to the appearance  of thermal  s t r e s se s  if c~ = 0, nt~ = 0. 

For  making the dependence nt(t ) specific it is neces sa ry  to approximate the experimental  graph E(T) 
of the given mater ia l  by an analytic function. In this r espec t  the most  convenient a re  the functions: 

a) the l inear  function 

b) the step function 

c) the hyperbolic function 

E(T)  = Eo [1 - - ~  (T - -  To)i; (3) 

E ( T ) = E  o for T - ~ T * a n d E = O  for T >  T*; (4) 

E ( T )  = Eo/[1 + ~ (T  - -  To)]; (5) 
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Fig .  1. Di f fe ren t  me thods  of app rox ima t ion  of the e x -  
p e r i m e n t a l  dependence  E (T): 1) by Eq .  (3); 2) by Eq .  
(6) (2 f o r  ~4 = 0.001, 2 '  f o r •  = 0.002, 2" f o r  ~ = 0.01); 
3) by Eq .  (5), T = 20~ ~ = 0.1; 4) expe r imen t a l  da ta .  

d) the pa rabo l i c  funct ion  

E ( T )  = E o [1 - -  • (T - -  T0)2]. (6) 

The g r aphs  of t he se  funct ions ,  r e f e r r e d  to E0, a r e  shown in Fig.  1 toge the r  with the c h a r a c t e r i s t i c  
dependence  E(T). We shal l  m a k e  use  of funct ions  (3)-(6) in the d e t e r m i n a t i o n  of the t e r m s  ntE and nta  of 
f o r m u l a  (2) in the c a s e  of a l i nea r  law of v a r i a t i o n  of the  s u r f a c e  t e m p e r a t u r e  of the plate:  

T (R, t) = To+ b t =  To(l  +PdFo) .  (7) 

F o r  the l i nea r  a p p r o x i m a t i o n  of the dependence  1< (T) we have (8) 

*z,E=Eo[1 - -  ~ ( r -  r 0 ) ] / L  

It  fol lows f r o m  h e r e  that  in o r d e r  to compu te  n tE it is suf f ic ient  to know the v a r i a t i o n  of the a v e r a g e  t e rn-  
p e r a t u r e  of the plate  with t ime .  The a v e r a g e  t e m p e r a t u r e  of the p l a t e f o r  the adopted law of heat ing is  given 

by  the r e l a t i on  [2] 

, ~ - T  = P d i F O T o  __3_1 2 B,~ exp(_/x2Fo)].q_ ~ (9) 

F o r  sma l l  va lues  of Fo n u m b e r  f r o m  the l a s t  equat ion  we obtain  

~ E  = 1 - ~ b t ,  V ( T ~ ) ,  _ 1 - ~ 70  Pd(Fo)p  V(F~; ; ) ,  

and correspondingly for large Fo numbers (quasistationary regime of heating) 

(lo) 

[ ( {'- :'o Pd 1 ] / '  17"rE ~ - -  (11) 

The  work ing  l ife of the plate  f o r  a given r e l a t i ve  s t r eng th  ntE is  e a s i l y  de t e rmined  f r o m  the las t  

equation. 

A m o r e  a c c u r a t e  de sc r i p t i on  of the t e m p e r a t u r e  dependence  E(T) than the l i nea r  funct ion is given by 
the pa rabo l i c  funct ion (6) ; us ing  this  funct ion we get  n t E =  E / E  = ~4 (T -- To) 2. Ca lcu la t ing  the value of (T 
-- T0) 2 we obtain 

The computa t ion  of ntE with the u se  of funct ions  (3) and (6) is poss ib le  only under  the condi t ions  T 
_< T 1 = 1 / [  + T O fo r  the  l i nea r  and T _< T = , / - i /~  + T o for  the pa rabo l i c  app rox ima t ion  of the dependence  
E(T). If t hese  condi t ions  a r e  not sa t i s f ied ,  subs t i tu t ion  of the v a r i a b l e  T in f o r m u l a s  (3), (6) g ives  negat ive  
va lues  of the modu lus  of e las t ic i ty .  
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Fig. 2. Redistribution of stresses over the plate thickness, cor- 
responding to the linear approximation (a) and step-function ap- 
proximation (b) of the dependence E (T). 

For  many compound mater ia l s  the step-function approximation (4) is valid for h igh- tempera ture  heat-  
ing. The limiting t empera tu re  T* approximately  corresponds  to the t empera tu re  of the most  intensive soft-  
ening of the thermoplas t ic  components binding the composit ion mater ia ls .  The step-function approximation 
of the dependence E(T) is equivalent to the asser t ion  that the displacement  of the i so thermal  surfaces  with 
t empera tu re  T* leads to the exclusion of the layer,  heated to higher t empera tures  and lying beyond this 
surface  (see Fig. 2), f rom operation. The relat ive deformations of such layers  of the mater ia l  a re  infinitely 
large: e x = ( ~ / E ) E ~  0 --* co; therefore  the t empera tu re  dependence ~b(T) of the mater ia l  of these layers  has 
no effect on the final resul t  of computation of n t. This s t ep-by-s tep  softening of the l ayers  of the plate can 
be represented  as a dec rease  of its thickness with the ra te  of displacement of the t empera tu re  front T*. 
Hence the softening of the plate begins at the instant when the s t r e s s e s  in its heated part, where T < T*, 
reach  the ult imate s trength 

%.2.z* = (~)~. 2. R = Pp/H. (13) 

Whence we obtain 

tllE = Z*/I~. (14) 

Closed exact solutions in these  methods of approximation can be obtained only for a ve ry  small  number 
of heating reg imes  of the plate. Thus, for example, for  a parabolic t empera ture  distr ibution putting T -- T* 
in the formula  

b 
T = T O + bt - -  -2a (R~ --  z'-'), (15) 

and expanding it with respec t  to z*, we find that 

n ~ = l / /  2 T*- -T  O at 
bR - a - - 2 ~ _ -  § 1 =t/"2K~--2Fo-I-1.  (16) 

The approximation of E(T) with the use of function (5) leads to the following result :  

§  

1 t' E~ Ka (17) hie -- 2RE 1 4- ~ ( T - -  To) dz = E~ _ arctg 
K3(1 + ~bt - -K3)  V)(~3 (1 + ~bt - -K3)  -'R 

For  heating regimes  of the plate other than the l inear  var ia t ion of the surface t empera tu re  with t ime 
approximate  methods based on the elimination of the spatial coordinate a re  ve ry  effective. The use of these 
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Fig. 3. Kinetics of softening of AG-4S g lass -  
f i be r - r e in fo rced  plast ic  specimens  under 
s h o r t - t e r m  heating with different  compress ion  
loads: 1) according to (19), without taldng into 
account the dependence of ~b on T; 2) a c c o r d -  
ing to (19), taking into account  the t e m p e r a -  
t u re  dependence of ~b; 3) according to (10), T* 
= 170~ 4) according to (11); 5) exper imenta l  
data, determined f rom specimens  a) 8, b) 5, 
and c) 3 mm  thick. 

nt~ = -~ aEoToPd 
6~ b 

methods is of pract ica l  in teres t ,  since the working 
life of the plate and the average  s t r e s s  (~x)p can be 
in te r re la ted  through a s imple relat ionship.  Thus, for  
a var ia t ion  of the surface  t empera tu re  of the plate 
by a jump f ro m  T O to T c the displacement  of a fixed 
t empera tu re  front  ~* = (T* - To) / (T c - To) in the 
plate is descr ibed  by the re la t ion 

R - - z  = R - - K 2  v' 12 (Fo),. (18) 

Hence 

nt~ = 1 --/(2 V 12 (Fo), . (19) 

We now turn to the determinat ion of the second 
t e r m  in formula  (2) for  the parabolic  law of t e m p e r a -  
tu re  distr ibution in the plate and l inear  approximation 
of the dependence E(T). In this case we have EAT 
= Eo[(T - To) - [(T - To)2]. 

Substituting the value of the t empera tu re  and 
averaging,  a f te r  some manipulations we obtain 

aE~176 11 PdTo} n ,~=  6% --  ~ [(Fo)p § 1 ] (20) 

in the computation at the middle l ayer  (z = 0) and 

in the computation at the sur face  l aye r  (z = R). Of the two last  values of nt~ the value giving the smal les t  
coefficient  nt~ should be taken, i .e. ,  depending on whether  the unsafe point l ies  at the middle or the sur face  
layer  of the plate. For  a s tep-funct ion approximation of E(T) we have 

E A T =  E~ { b t - -  bR~ + b z,2 ~, (22) 
R \ 2a 6a ] 

nt = n t z ( 1  aE~176 (23) 
6 o o 

for  z = 0 and 

F aEoToPd ( ~  n te- -1)  ] (24) n t = rite [ 1 2% 

for  z = R. 

As an example we use the obtained relations to describe the experimental data of [2] on the kinetics of 

softening of glassfiber-reinforced plastics under the action of heat fluxes of large intensity. In this work the 

results of tests of samples, whose surface temperature was varied in accordance with the linear law with the 

use of a programmed device, are presented. The experimental values of n t for samples of different thick- 

ness (Pd = I)arepresentedin Fig. 3 and the curves of nt(t), constructed from formulas (I0)and (II), are 

plotted. A comparison of the experimental and computational results shows that the linear approximation 

of the dependence E(T) gives the best agreement: the maximum deviation from the mean value of n t at Fo 
= 0.35 does not exceed 20%. Two types of disintegration of the samples were observed in the tests: laminar 

disintegrationwhich started at n t < 0.5, and brittle disintegration which started at n t > 0.5. In this connection let 
us turn back to formula (24), from which it follows that at small values of n t the second term, which determines the 

level of the thermal stresses, is comparable with the term ntE in order of magnitude. In the experiment the tested 

samples were subjected to compression; therefore for small n t the thermal stresses combine additively with the 

stresses ~x from the external force and produee a peak of the stresses in the surface zone of heating. As the photo- 

graphs showed, this led to a local loss of stability of the surface layers. According to formula (21) the param- 
eter nt~ increases in proportion to the rate of heating and is independent of ~x. Hence the increase of n t 
is caused by the increase of the first term ritE. This means that with the change in n t the maximum of the 
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s t r e s s  d i ag ram shifts  toward the middle  su r face  and the sample  d i s in tegra tes  in all  the l aye r s  following 
the d is in tegra t ion  of the middle  c a r ry i ng  layer .  Thus the softening of the s amples  occurs  in two s tages  
which r e m a i n  undetected in the analys is  by the methods of the theory  of s imi la r i ty .  The f i r s t  of these  is 
r e spons ib le  for  the appea rance  and development  of t h e r m a l  s t r e s s e s ,  the second for  the i r  equalization. 
The dis in tegra t ion of the s am p l e s  s t a r t s  (depending on the mechan ica l  and the rmophys ica l  p rope r t i e s  
of the mate r ia l )  e i ther  at  the instant  of the act ion of m a x i m u m  t h e r m a l  s t r e s s e s  at the end of the f i r s t  s tage,  
or  as  a r e su l t  of vanishing of the ca r ry ing  capaci ty  of the plate at the end of the second stage.  

The init ial  a s sumpt ion  that eb  and E a r e  constant  quanti t ies  is  not a lways valid for  r ea l  m a t e r i a l s ,  
e spec ia l ly  at i nc reased  t e m p e r a t u r e s .  Computation of l o n g - t e r m  s t rength  (rb(T , t) and durabi l i ty  a r e  c a r -  
r ied out based  on the pr inciple  of superpos i t ion  of damage- l i ab i l i t i e s  of the m a t e r i a l  using Ba i ly ' s  c r i t e r ion  
[3]. Another poss ib le  method of computing the  change of t e m p e r a t u r e  and s t r e s s e s  in the calculat ion of long- 
t e r m  s t rength  is based on the r ep re sen ta t i ons  of the ac t iva t ion  theory  of s t rength  [4, 5]. According to this 
theory  the d is in tegra t ion  of bodies is explained by the rup ture  of chemical  bonds, occur r ing  with the r a t e  

te = tea exp (-- U/RT).  (25) 

In the ease  of a l inear  dependence of the act ivat ion energy  on the s t r e s s ,  U = U 0 - ycr, tp is d e t e r -  
mined by Eq. (27). Assuming  that  the u l t imate  s t rength  of the m a t e r i a l  is propor t ional  to the number  of 
bonds N and their  d is in tegra t ion obeys the f i r s t  o rde r  r eac t ion  equation dN/d t  - - k N ,  by in tegra t ing we ob- 
tain the following re la t ion  between the d is in tegra t ing  s t r e s s  and the durat ion of i ts  act ion 

t 
P 

~, = ~= + (Crin U- ~=)exp ! kdt. (26) 

In p rac t i ce  it is s o m e t i m e s  impor tan t  to obtain an approx ima te  es t ima te  of the sma l l e s t  value of the 
working l ife of the m a t e r i a l  in the unsafe l aye r  of the heated plate. Then, if the s t r e s s  in the unsafe  l ayer  
is amonotonic  function of t ime,  us ing the mean  value t heo rem we obtain 

f 

j'j kdt = = exp - -  + exp (27) 
o RTo , R T  

m 

Taking into account  the va r ia t ion  of the u l t imate  s t rength  of the m a t e r i a l  with t e m p e r a t u r e  and t ime  

n~ = n~% (T, 0 /% (T). (28) 

The effect  of the t e m p e r a t u r e - t i m e  dependence of e las t ic  and v i s c o u s - e l a s t i c  p rope r t i e s  of tile m a -  
t e r i a l  on the s t r e s s e d  s ta te  of the sample  in nons ta t ionary  r e g i m e  of heat ing is  d iscussed  in [7]. 

The re la t ions  obtained he re  can be genera l ized  to the case  of heating of a plate of l a rge  width, if  the 
Po i sson  coeff icient  of the m a t e r i a l  is  constant.  Then, as  shown in [1], in the plane s t r e s s e d  s ta te  

B 
% - -  - -  [% q- v % - - a T ( 1  + v)] (29) 

1 - -  v 2 

and, hence, 
n~ = nt~ + nt~/(1 - -  v). i30) 

H 
2R 

(~x) p 
Pd = bR / a T  o 
b = d T / d t  
#n = (2n - 1) 

A, B 
(Fo)p 
Z *  

NOTATION 

is the width of the plate; 
is the thickness of the plate; 

is the mean stress at which disintegration of the plate occurs; 
is the Predvoditelev number; 
is the rate of heating; 

are the characteristic numbers; 
are the constant coefficients; 

is the Fourier number corresponding to the instant of disintegration of the sample; 
is the coordinate of the layer with temperature T*; 
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K i = ( T / T  o -  1 ) /Pd ;  
K 2 = 1 - ~f(T* - To) / (T c - To); 
K 3 - ~bR2/2; 
v is the Poisson coefficient;  
k0, U0, ~/ a r e  m a t e r i a l  constants ;  
O-ins, (~ ~ are the instantaneous and equilibrium values of disintegration stresses. 
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